Astronomy, Stellar, Planetary News
TIME AND SPACE
Electron ordering mapped in quantum material with cryogenic 4D-STEM
illustration only

Electron ordering mapped in quantum material with cryogenic 4D-STEM

by Riko Seibo
Tokyo, Japan (SPX) Jan 20, 2026

Electronic order in quantum materials often arises through intricate, non-uniform patterns that shift across space. A well-known example is the charge density wave (CDW), an ordered electronic state that forms periodic patterns at low temperatures. Although CDWs have been studied for decades, directly observing how their strength and spatial coherence evolve through a phase transition has remained an experimental challenge.

A research team led by Professor Yongsoo Yang from the Department of Physics at KAIST, in collaboration with Professors SungBin Lee, Heejun Yang, and Yeongkwan Kim and colleagues at Stanford University, has now directly visualized how CDW amplitude order develops and changes inside a quantum material for the first time.

Mapping Electronic Order in Real Space

Using a liquid-helium-cooled electron microscope and four-dimensional scanning transmission electron microscopy (4D-STEM), the researchers traced how CDW order grows, weakens, and fragments as temperature varies. This technique enabled nanoscale mapping of CDW amplitude, revealing not only where the order exists but also its strength and connectivity.

The process is akin to filming the freezing of a lake - where some areas ice over first while others remain liquid. Here, the team observed electrons self-organizing at cryogenic temperatures near -253 C, resolving details more than 100,000 times smaller than the width of a human hair. The resulting maps revealed that CDW order forms inhomogeneously across the crystal, with well-ordered regions interspersed with disordered ones.

Linking Local Strain to Electronic Order

The researchers further showed that local strain strongly influences CDW formation. Even minute crystal distortions - too small to detect optically - were found to suppress CDW amplitude. This clear anticorrelation between strain and electronic order demonstrates the decisive role of lattice imperfections in shaping electronic behavior.

Intriguingly, localized CDW regions persisted even above the nominal transition temperature, where long-range order is expected to melt. These residual pockets indicate that CDW transitions occur gradually rather than abruptly, through partial loss of spatial coherence.

A New Approach to Quantum Material Studies

Crucially, the study reports the first direct measurement of CDW amplitude correlations, revealing how coherence deteriorates across the transition while local order remains finite. This level of detail was previously inaccessible with traditional diffraction or scanning probe methods.

Since CDWs often coexist or compete with other electronic states, this framework offers a new route to investigate how collective electronic order emerges and evolves in real space.

As Dr. Yang explains, "Until now, the spatial coherence of charge density waves was largely inferred indirectly. Our approach allows us to directly see how electronic order changes across both space and temperature, and to pinpoint the factors that stabilize or disrupt it."

The research - conducted with Seokjo Hong, Jaewhan Oh, and Jemin Park of KAIST as co-first authors - was published in Physical Review Letters on January 6, under the title "Spatial correlations of charge density wave order across the transition in 2H-NbSe2."

Funding was provided by the National Research Foundation of Korea (NRF) through the Individual Basic Research, Basic Research Laboratory, and Nanomaterial Technology Development programs under the Korean Government (MSIT).

Research Report:Spatial correlations of charge density wave order across the transition in 2H-NbSe2

Related Links
The Korea Advanced Institute of Science and Technology (KAIST)
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
This crystal sings back: Illinois collaboration sheds light on magnetochiral instability
Urbana IL (SPX) Jan 14, 2026
Researchers from The Grainger College of Engineering at the University of Illinois Urbana-Champaign have reported the first observation of a dynamic magnetochiral instability in a solid-state material. Their findings, published in Nature Physics, bridge ideas from nuclear and high-energy physics with materials science and condensed matter physics to explain how interplay between symmetry and magnetism can amplify electromagnetic waves. A material's behavior is heavily influenced by its symmetries. ... read more

TIME AND SPACE
Jupiter's moon Europa has a seafloor that may be quiet and lifeless

Uranus and Neptune may be rock rich worlds

SwRI links Uranus radiation belt mystery to solar storm driven waves

Looking inside icy moons

TIME AND SPACE
TIME AND SPACE
Pandora exoplanet mission checks in after launch

Mixed crystal phase of superionic water mapped inside giant planets

Creating hallucination-free, psychedelic-like molecules by shining light on life's basic building blocks

Giant amoeba virus ushikuvirus sheds light on how complex cells evolved

TIME AND SPACE
Ancient deltas reveal vast Martian ocean across northern hemisphere

The electrifying science behind Martian dust

Sandblasting winds sculpt Mars landscape

Thin ice may have protected lake water on frozen Mars

TIME AND SPACE
Lunar spacecraft exhaust could obscure clues to origins of life

Chinese astronauts hone extreme cave survival skills

Danish Mani mission to chart lunar terrain in 3D

Origami style lunar rover wheel expands to climb steep caves

TIME AND SPACE
Jets from black hole drive record coronal gas stream in nearby galaxy

Milky Way stars mapped as major source of ghost particle flux at Earth

Barred spiral galaxy spotted 11.5 billion years in the past

Jet from galaxy black hole drives vast stream of super heated gas into space

TIME AND SPACE
China geospatial information industry approaches 1 trillion yuan output

Nullschool launches new mobile app for popular Earth weather platform

Third COSMO-SkyMed Second Generation radar satellite enters service ramp-up

NASA Earth science faces rollback as Mission to Planet Earth era winds down

TIME AND SPACE
Asteroid metals harden under extreme particle blasts

Iron rich asteroids show surprising resilience in impact simulation study

NSF-DOE Vera C. Rubin Observatory spots record-breaking asteroid in pre-survey observations

Micro X ray method reads ancient meteorite impact scars

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.