Astronomy, Stellar, Planetary News
TIME AND SPACE
Astrophysicists capture gamma-ray flare from supermassive black hole M87
The supermassive black hole (center) shown by the Event Horizon Telescope is located in the center of galaxy M87. The short linear feature near the center is a jet produced by the black hole.
Astrophysicists capture gamma-ray flare from supermassive black hole M87
by Holly Ober for UCLA News
Los Angeles CA (SPX) Dec 15, 2024

The first-ever photo of a black hole rocked the world in 2019, when the Event Horizon Telescope, or EHT, published an image of the supermassive black hole at the center of the galaxy M87, also known as Virgo A or NGC 4486, located in the constellation of Virgo. This black hole is surprising scientists again with a teraelectronvolt gamma-ray flare - emitting photons billions of times more energetic than visible light. Such an intense flare has not been observed in over a decade, offering crucial insights into how particles, such as electrons and positrons, are accelerated in the extreme environments near black holes.

The jet coming out of the center of M87 is seven orders of magnitude - tens of millions of times - larger than the event horizon, or surface of the black hole itself. The bright burst of high-energy emission was well above the energies typically detected by radio telescopes from the black hole region. The flare lasted about three days and probably emerged from a region less than three light-days in size, or a little under 15 billion miles.

A gamma ray is a packet of electromagnetic energy, also known as a photon. Gamma rays have the most energy of any wavelength in the electromagnetic spectrum and are produced by the hottest and most energetic environments in the universe, such as regions around black holes. The photons in M87's gamma ray flare have energy levels up to a few teraelectronvolts. Teraelectronvolts are used to measure the energy in subatomic particles and are equivalent to the energy of a mosquito in motion. This is a huge amount of energy for particles that are many trillion times smaller than a mosquito. Photons with several teraelectronvolts of energy are vastly more energetic than the photons that make up visible light.

As matter falls toward a black hole, it forms an accretion disk where particles are accelerated due to the loss of gravitational potential energy. Some are even redirected away from the black hole's poles as a powerful outflow, called "jets," driven by intense magnetic fields. This process is irregular, which often causes a rapid energy outburst called a "flare." However, gamma rays cannot penetrate Earth's atmosphere. Nearly 70 years ago, physicists discovered that gamma rays can be detected from the ground by observing the secondary radiation generated when they strike the atmosphere.

"We still don't fully understand how particles are accelerated near the black hole or within the jet," said Weidong Jin, a postdoctoral researcher at UCLA and a corresponding author of a paper describing the findings published by an international team of authors in Astronomy and Astrophysics. "These particles are so energetic, they're traveling near the speed of light, and we want to understand where and how they gain such energy. Our study presents the most comprehensive spectral data ever collected for this galaxy, along with modeling to shed light on these processes."

Jin contributed to analysis of the highest energy part of the dataset, called the very-high-energy gamma rays, which was collected by VERITAS - a ground-based gamma-ray instrument operating at the Fred Lawrence Whipple Observatory in southern Arizona. UCLA played a major role in the construction of VERITAS - short for Very Energetic Radiation Imaging Telescope Array System - participating in the development of the electronics to read out the telescope sensors and in the development of computer software to analyze the telescope data and to simulate the telescope performance. This analysis helped detect the flare, as indicated by large luminosity changes that are a significant departure from the baseline variability.

More than two dozen high-profile ground- and space-based observational facilities, including NASA's Fermi-LAT, Hubble Space Telescope, NuSTAR, Chandra and Swift telescopes, together with the world's three largest imaging atmospheric Cherenkov telescope arrays (VERITAS, H.E.S.S. and MAGIC) joined this second EHT and multi-wavelength campaign in 2018. These observatories are sensitive to X-ray photons as well as high-energy and very-high-energy gamma-rays, respectively.

One of the key datasets used in this study is called spectral energy distribution.

"The spectrum describes how energy from astronomical sources, like M87, is distributed across different wavelengths of light," Jin said. "It's like breaking the light into a rainbow and measuring how much energy is present in each color. This analysis helps us uncover the different processes that drive the acceleration of high-energy particles in the jet of the supermassive black hole."

Further analysis by the paper's authors found a significant variation in the position and angle of the ring, also called the event horizon, and the jet position. This suggests a physical relationship between the particles and the event horizon, at different size scales, influences the jet's position.

"One of the most striking features of M87's black hole is a bipolar jet extending thousands of light years from the core," Jin said. "This study provided a unique opportunity to investigate the origin of the very-high-energy gamma-ray emission during the flare, and to identify the location where the particles causing the flare are being accelerated. Our findings could help resolve a long-standing debate about the origins of cosmic rays detected on Earth."

Research Report:Broadband multi-wavelength properties of M87 during the 2018 EHT campaign including a very high energy flaring episode

Related Links
Very Energetic Radiation Imaging Telescope Array System
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
NASA's IXPE details shapes of structures at newly discovered black hole
Huntsville AL (SPX) Dec 08, 2024
NASA's IXPE (Imaging X-ray Polarimetry Explorer) has helped astronomers better understand the shapes of structures essential to a black hole - specifically, the disk of material swirling around it, and the shifting plasma region called the corona. The stellar-mass black hole, part of the binary system Swift J1727.8-1613, was discovered in the summer of 2023 during an unusual brightening event that briefly caused it to outshine nearly all other X-ray sources. It is the first of its kind to be obser ... read more

TIME AND SPACE
Juno identifies localized magma chambers driving Io's volcanic activity

NASA marks ten years of Hubble's Outer Planets Survey

Magnetic tornado is stirring up the haze at Jupiter's poles

Uranus moons could hold clues to hidden oceans for future space missions

TIME AND SPACE
TIME AND SPACE
The light of TRAPPIST-1 b analyzed at two wavelengths reveals key insights into its nature

Planets form sequentially like falling dominos

Discovery of a planet with a shifting gas tail

Unveiling a hydrogen-controlled nano-switch in electron transport proteins

TIME AND SPACE
NASA performs first aircraft accident investigation on another world

NASA rover surmounts Jezero crater rim to begin next science campaign

New study questions the potential for liquid brines on Mars

NASA Outlines Latest Moon to Mars Plans in 2024 Architecture Update

TIME AND SPACE
NASA welcomes Thailand as 51st Artemis Accords signatory

NASA aims to solve Lunar housekeeping's biggest issue - infinite dust!

Artemis Accords expand to 50 Nations with Austria and Panama signing

Artemis in Motion Listening Sessions

TIME AND SPACE
M87 jet observations reveal rare gamma-ray outburst

A new galaxy, much like our own

NASA Successfully Integrates Roman Mission's Telescope, Instruments

Black holes at the heart of Milky Way's largest star cluster reshaped in new research

TIME AND SPACE
AI advances unlock 3D cloud mapping from satellite data

NASA studies crops, forest response to changing rainfall patterns

China launches Sea Sentinel 1 satellite for remote sensing

SatVu secures ESA funding for high-resolution thermal imaging project in energy sector

TIME AND SPACE
Lucy completes key Earth gravity assist maneuver

It's an Asteroid, it's a Comet, it's the Geminids Meteor Shower!

MIT astronomers find the smallest asteroids ever detected in the main belt

NASA research uncovers expanding dark comet populations

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.